Analyzing halftone dot blurring by extended spectral prediction models.

نویسندگان

  • Mathieu Hébert
  • Roger David Hersch
چکیده

Spectral prediction models for halftone prints generally assume homogeneously thick and sharply edged ink dots, i.e., bilevel halftones. In real prints, the ink thickness often decreases at the boundaries of the ink dots, thereby forming continuous-level halftones. The present study aims at verifying to what extent the classical Clapper-Yule and Yule-Nielsen models are able to predict the reflectance of single-ink continuous-level halftone prints. First we model the reflectance of continuous-level halftones by developing variable thickness extensions of both the Clapper-Yule and the Yule-Nielsen spectral prediction models. We consider continuous halftones whose thickness profiles are obtained by Gaussian filtering of the bilevel halftone image. Then we predict the reflectance spectra defined by the continuous-level models by fitting the bilevel models' effective ink surface coverages. Since dot blurring tends to increase the absorption of light by the ink, the effective ink surface coverage is larger than the nominal one, i.e., dot blurring induces its own contribution to dot gain. Dot blurring can also be accurately modeled by an increased n-value of the classical Yule-Nielsen model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral prediction and dot surface estimation models for halftone prints

We propose a new spectral prediction model as well as new approaches for modeling ink spreading which occurs when printing ink layer superpositions. The spectral prediction model enhances the classical ClapperYule model by taking into account the fact that proportionally more incident light through a given colorant surface is reflected back onto the same colorant surface than onto other coloran...

متن کامل

Ink-dependent n-factors for the Yule-Nielsen modified spectral Neugebauer model

Different inks may have different mechanical and/or optical properties. Existing Yule-Nielsen modified Neugebauer spectral prediction models assume however that the inks forming a color halftone behave similarly, i.e. that a single n-factor can model the lateral propagation of light within the paper as well as non-uniformities of the ink dot thickness profiles. However, if the inks have very di...

متن کامل

Spectral prediction model for variable dot-size printers

By printing a variable number of droplets onto the same pixel location, ink jet printers produce pixels at variable dot-sizes yielding several darkness levels. Varying the number of printed droplets affects the ink volume deposited onto the substrate. In the present contribution, we explore the possibility of producing accurate spectral reflectance predictions at all pixel dot-sizes. For this p...

متن کامل

A Spectral Model for Halftone Color Prediction

In this paper, we take a spectral model based approach to the problem of color prediction of halftones. Our approach assumes no scattering through the colorant layers and models the surface and subsurface scattering in the paper substrate by a parametric closed form point spread function. Given a halftone bitmap, we synthesize a high-resolution halftone microstructure image assuming dot profile...

متن کامل

Spectral reflection and dot surface prediction models for color halftone prints

The proposed new spectral reflection model enhances the classical Clapper-Yule model by taking into account the fact that proportionally more incident light through a given colorant surface is reflected back onto the same colorant surface than onto other colorant surfaces. It comprises a weighted mean between a component specifying the part of the incident light that exits through the same colo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Optical Society of America. A, Optics, image science, and vision

دوره 27 1  شماره 

صفحات  -

تاریخ انتشار 2010